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ABSTRACT

A formal solution of Liouville’s equation for both
the classical and the quantum mechanical case is pre-
sented. The derivation closely follows the approach
employed by Feynman in his papers on the theory of pos-
itrons in The Physical Review, Volume 76, pages 749, 769,
1949. A scattering operator S is found which connects
the distribution function at time ¢’ with the distribution
function at any later time : Using a diagram, each term
of this scattering operator can be represented uniquely and
conveniently. The topological structure of these diagrams
is the same in the classical as well as in the quantum
mechanical case.

I.  INTRODUCTION

The Liouville equation represents a natural starting point for studies of non-equilibrium
statistical mechanics (see Ref. 1-7). The many-body problem encountered in statistical mechanics
may advantageously be handled by the mathematical methods especially developed for the
infinite many-body problem of quantum field theory (see Ref. 8). As an example, Prigogine and
collaborators (see Ref. 9) used the S matrix formalism in some of their papers. Furthermore, the
well-known approach of Prigogine and collaborators to the solution of Liouville’s equation by
means of Fourier transforms and a diagram technique (see Ref. 10) bears much formal resemblance

to field theoretical methods.

In this Report a formal solution of the Liouville equation is presented; the solution
is based on Feynman’s approach to the solution of the Schrodinger equation (see Ref. 11). The
actual derivation is given in Section II. An integral kernel plays the central role of the develop-
ment. This kernel is somewhat similar to the phase-space transformation function introduced by

Ross and Kirkwood (see Ref. 12), although it is a Green’s function rather than a solution of the
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homogeneous Liouville equation. The various contributions of a perturbation expansion of this

kernel give rise to corresponding contributions to the distribution function which may be classi-

fied by diagrams.

The modifications due to quantum mechanics are also outlined for the case of the Wigner
distribution function (see Ref. 13). The physical significance of the diagrams is clarified in

Section IIl by means of an equivalent perturbation expansion of the equations of motion.

Il.  DERIVATION

The classical Liouville equation for an N-particle system may be written as

9
(B—+V-VR> fRV,t) = ~FR,V) -V, f(R,V,1) (1)
¢

where R is the abbreviation for the set of position coordinates s Tos oo s Iy of the N particles.

Similarly V stands for Vi Vs etV the velocities of the particles. F = Fl’ F2, o, Fp, where
F]- is the force acting on particle j divided by its mass. F may be a function of both position and

velocity. The symbol V « V, is an abbreviation for

|[\/]2

A kemel G(R,V,t; RV, t") is now introduced which allows for the expression of the
distribution function f(R,V,¢) for ¢ > ¢'by

f(R,V,t) = [dR'dV'G(R,V,t; RVt f(R'V,)¢t" (2)

if it is known at an earlier time ¢! The integration runs over the complete phase space

dR'dV'= da"l' d3f2' dav{ dsvé ««e . The kemel G has the following properties:

3
(a_ CV Vet F vv> CRV, G RIVIY = 5(R~RD 8V -~V st—t) (@3
t
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lim G(R,V,t;R'V/t)Y= S(R-R") s(Vv-V" (4)

t-> ll

Equation (3) shows that G is a Green’s function of the Liouville equation. Equation (4) is
necessary for Eq. (2) to be consistent. Equations (2), (3) and (4) are strongly reminiscent of
Feynman’s approach to the solution of Schrodinger’s equation. In fact, if the operator

V.V +F .V, isreplaced by the Hamiltonian H and the distribution function f is replaced by
the wave function ¥, Eqgs. (2), (3) and (4) are identical with Feynman’s theory. (For the account
of this approach see Ref. 12.) It is now proposed to solve Eq. (3) by an iteration method assum-

ing weak interactions. We obtain

G =Go+Gy+ Gyt o (5)
)
<—+V-VR>GO= SR-R" §(V-V') §(t-1¢t" (6)
ot
3
(—— +V. VR>. G,=~F-V,G,, (n21) )
ot

The solution of Eq. (6) is immediately written! as

Go RV, t;R'V/t") = §(V-V)S[R-R'-V'(t-¢t)] 85—t (8)

introducing the step function

lforx > 0
S = 9
Oforx <0

1The solution Eq. (8) is the retarded Green’s function. The advanced Green’s function is found
by replacing $(¢r - t") by =S(¢' ~¢).
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It is easily seen that Eq. (4) is satisfied for expression (8). From Eq. (7) it is apparent

Gn (R, V,t; R,I v’ltl) - - f dt " dR " dV " GO (R, V,t; R,"V,"t")

(10)
x F (R,"V”) . Vv” Gn_l (R’Ilv,ll II; R,I v’ltl)

Successive application of Eq. (10) reveals after straightforward calculation that

t !
G, (R, V,t;R'V/¢t") = fdzl fldz2 o f

¢’ t ¢

t-1 f
dln dV2 st 1%

n

x (- D? SI:R—V(z—tl)— Z Vj(ti_l-t].)—V'(tn—t'):l
;=2
x FIR=V(t-t),V]1-V, 5(V -V, (11)

x FIR=V(=t) - V() =2, ¥p) - Vy 8 (Vy=Vy) -

n
xFl:R—V(z—tl)— z v,.(c]._l-tl.),vn]vv 5(Vn—V')
j=2 "

Inserting the expressions (8) and (11) into Eq. (2) and performing the phase-space integrations as
indicated has the following result. The distribution function at time ¢ is connected with the

initial distribution function at time ¢’ through a scattering operator S

fR,V,2) =SfIR-V(t=t"), V,¢'] 12)
where
o 0]
s= 3 s (Sp = D) (13)
n=0
and forn > 1
t ll tn_l n
So=0" [ ay [ ary - g T FIR-V(-1)V]l.P, (19
¢’ ¢! t' a=1
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with

Po=Vy ==tV = 5 [Vy~lt,~t0 V) =P+ > Py (15)
B=a+l B=a+l

The gradient V), in Eq. (15) is always connected with a gradient Vp in the specific configuration

Ps=Vy = (5~ 1) Vg (16)

The operator Pa.,B is defined as acting only on that function of R and V which contains the same

time label 3. Furthermore, Vv does not act on the argument R -~ V(¢ — ‘ﬁ)' In other words

| v —+
PgFIR-V(t-¢,),V] = Sﬁy{VVF[R—V(z—ty),V} - (ta—zﬁ)VRF[R—V(z—t,y),V]}
a7

indicating by an arrow on which argument the gradient operates. Inserting Eq. (15) into (14) it

is seen that S can be expressed by a sum of terms of the following structure

a

t 4! fp-1
n
S, = (=1" Z f dt, f dz2 f dt, Zl FIR-V( —ca),V] ‘Pay (18)
'y 1 1 ] a=
t t t

In Eq. (18) the condition is ¥, > a but otherwise arbitrary and the sum runs over all n! possi-
bilities to pick a set of ¥, > a. Any particular term of the sum may be represented by a diagram.
We define the diagrams in the following way: An nth order diagram consists of n + 1 vertices
labeled with a time coordinate ¢, starting with the latest time ¢; on the left (Fig. 1a) and ending
with a vertex associated with the earliest time, ¢’ the initial time, on the right. Starting from
each vertex a (except the one associated with ¢') there is one and only one directed solid line
which ends at any arbitrary vertex [ with an earlier time including the last vertex (Fig. 1b). The
last vertex associated with the initial time ¢'is called the external vertex (each diagram has only
one external vertex) all the others are called internal vertices. A solid line starting from any
internal vertex and ending at any other internal vertex is called an internal line. If it ends on
the external vertex however it is called an external line. Figure 1c shows a possible fifth order
diagram with two external and three internal lines; similarly, Fig. 1d shows a diagram with three

extert:al and two internal lines. The number of lines is equal to the number of internal vertices;
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indicating therefore the order of the diagram. There are n! different diagrams of order n correspond-
ing to the n! different ways of connecting any two of the n + 1 vertices by a solid line such that
only one solid line starts from any internal vertex. We associate with each vertex a the factor
-FI[R-V(t- ta), V] and with an internal line the operator Pa.,B which acts in the manner spec-
ified by Eq. (17) on the ~F[R -V (¢ - ‘ﬁ)’ V] associated with vertex 3. Furthemmore, associated

with an external line starting at the vertex a is the operator

P,=Vy - (t,-t)Vp (16a)

which acts on the initial distribution function represented by the external vertex. We now see
that any given diagram (Fig. lc, d for example) represents uniquely one term of the sum (18). As
an example, Fig. 2 shows the three lowest-order diagrams.

According to the rules outlined above the first-order contribution (Fig. 2a) is given by

t

S, = - [ d FIR-Vi-t).VI.P,
t,
(19)
t
= - f dty F[R-V(e-1¢), V][V, (¢, -t")Vp]
tl
The second-order contribution (Fig. 2b) is given by
t f
Sy = f dt, f dtg FIR-V(t-1t),V]- P, FIR-V(t-1),V]-Py, (20)
! ¢!
Here P12 acts on the succeeding F whereas le acts on the initial distribution function as
explained above. The other second-order contribution (Fig. 2c) is given by
t t
Sy = f dty [ dtyFIR-V(~1)),V]-P FIR-V(-t),V].P,y, (21)
e ¢!

where both P act on the initial distribution function.

Turning now to the quantum-mechanical Liouville equation for the Wigner distribution

function (see Ref. 15), discussion is restricted to the case in which the force F is derived from
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a potential F(R) = =~V ¢(R). The Liouville equation for the Wigner distribution function [(W) is
well known (see Ref. 16) to be

- w2 . /% v \ )
——+V'VR/f =_sm\__ R'VV) PR f (22)
% oM

Here the operator Vg acts only on the potential ¢(R). The sine operator is defined by its power
series expansion. [t is easily seen that the scattering operator S for f(W) may still be determined
by the same diagrams as were used in the classical case. Only the rules of associating an
internal vertex and an internal line to a given mathematical quantity have to be changed. An

internal vertex a now represents

2 gin <i Ve ) $IR ~V (¢t - 1)) (29)
% 2M

An internal solid line connecting the vertices a and 8 represents

Pa.,IB = —(la— t,@) VR (24)

where V acts on the potential associated with vertex B. The operator Pa.,B of Eq. (16) is also
replaced by Pa"@ Eq. (24) in the classical case if the forces do not depend explicitly on the
velocity as is seen from Eq. (17). According to Eq. (23) and (24), the complete expression for
the part of the diagram shown in Fig. 1bis

. 3 sin (j_ Ve -P2’4> IR —-V(t—tz)] (25)
i 2

An external solid line is still represented by Eq. (16a). As an example, Fig. 2b may be

considered, which represents

9 1% 2 %
sy= [ a, [ oa, = sin(———- e -P1'2> B[R -V(t-t)] — sin (— VR * P2/>
iy y # 2M A M

x @R -V (¢ ~1,)]
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Ill.  DISCUSSION

The rules which generate the scattering operator S being established, the consequences
at this point are interesting. First of all, it may be seen that the nth order temn of the series for
S consists of a sum over n diagrams with a varying number of internal and external lines. The
physical significance of an internal or external line will be clarified by the following consider-
ations. In the zeroth order the motion of the particles is undisturbed. They proceed along straight

lines. In fact the scattering operator being S = 1 to the zeroth order, Eq. (12) becomes
f(R,V,t)=f[R—V(t-t'),V,t'] (%)

To see how precisely the higher-order terms of the scattering operator introduce devi-
ations from the unperturbed straight lines of the zeroth order approximation, a perturbation
scheme applied directly to the equations of motion is outlined which is completely equivalent to
the perturbation analysis for the scattering operator described in Sec. II. Confining ourselves to

the classical equations of motion and to forces which depend only on the position, we have
R AFR) (2

together with the initial conditions

R(:) =R’ R(:") =V (27a)

A small expansion parameter A is introduced

R =Ry + ARy + AZRy + o (28)

Inserting Eq. (28) into Eq. (27) gives the successive approximations

R, =0
R, = FRy) (29)
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and the initial conditions are

Ry (t) =R’ Ryt =V
R, () =R (" =0 (29a)

Ry (t") =Ry (t) =0

It follows from Eq. (29) and (29a) that the successive approximations to the acceleration are

given by
i'\'.o =0 (30a)
Ry = FIR'-V('- 1) (30b)
t t
k'2 = f dt, f dtg FIR'-V(t'=ty)] - Vo F[R'-V (¢:'-1)] (30¢)
¢! t!

A glance back to Eq. (19), (20), and (21) and a comparison with Eq. (30b) and (30c¢)
reveals that Eq. (19), the first-order scattering operator, takes into account a deviation from the
unperturbed straight paths of the particles to exactly the same degree of approximation on which
Eq. (30b) is based. Equation (20), corresponding to the diagram with one internal line (Fig. 2b),
takes into account a first-order correction to the first-order effect given by Eq. (19), and it is
therefore of second order. The exact analog to this correction, expressed by an internal line, is
Eq. (30c). But this is not all that might happen in second order! Actually, a new ‘‘scattering’’
may be introduced at some other time between ¢t'and t. But Eq. (21), corresponding to the
diagram with two external lines (Fig. 2c), represents precisely the contribution from this event

again to the correct order of magnitude.

These findings may now immediately be generalized to an nth order contribution.
Suppose there is a specific nth-order diagram which represents one of the n! nth order contribu-
tions to the scattering operator. This diagram generates n + 1 diagrams of the (z + 1)st order. By
adding a new internal vertex to the left of the nth-order diagram and connecting it to either of the
n other internal vertices n new possible diagrams with one more internal line is obtained.
Connecting it with the external vertex, one new diagram with one more external line is obtained.
From the previous discussion it is clear that the (n + 1)st order diagrams generated from a
specific nth-order diagram take into account a correction to the path of any one particle in the
sense of Eq. (30c). This is possible in n different ways corresponding to the n different new
internal lines, whereas the possibility of a new scattering is represented by the addition of a
new external line. In short, internal lines represent corrections to already existing scatterings

and external lines represent the introduction of new scatterings. Of course, it should be realized
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that this explanation is more or less heuristic, since there is no explicit introduction of scatter-
ing cross-sections. The scattering operator, rather, gives the detailed time dependence of the
distribution function, and is therefore completely equivalent to the exact knowledge of the orbits
of all the particles involved. This is far too much information to be useful. In fact, to extract
useful information averaging procedures must be employed. Singlet, doublet, etc. distribution
functions may be introduced, and subsequently, Kirkwood’s coarse-graining device (see Ref. 17),

“‘Stosszahlansatz,’”’ etc. may be used. However, this is beyond the scope of the present Report.
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CONSTRUCTION OF A DIAGRAM

d
TWO PQOSSIBLE FIFTH-ORDER DIAGRAMS

Fig. 1. Construction and Examples of
Fifth-Order Diagrams
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FIRST-ORDER DIAGRAM

THE TWO SECOND-ORDER D!AGRAMS

Fig. 2. First and Second-Order Diagrams
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